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Abstract

Letd,, (x) = —xml//(m)(x), whereys denotes the logarithmic derivative of Euler’s gamma func-
tion. Clark and Ismail prove in a recently published article that it {1,2,..., 16}, thenCI)fnm)
is completely monotonic orD, co), and they conjecture that this is true for all natural numiners
We disprove this conjecture by showing that there exists an integeuch that for alin > mg the

function <I>§nm) is not completely monotonic of®, co).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let f : (a,b) — R be a function, which has derivatives of all orders. THen,called
absolutely monotonic, if

f™x)>0 forall xe(a,b) and n=0,1,2,.... (1.1)
And, f is said to be completely monotonic, if
(=1 f®x)>0 forall xe(a,b) and n=0,1,2,.... (1.2)
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The connection between these classes of functions is obvigaisompletely monotonic
on(a, b) ifand only if x — f(—x) is absolutely monotonic o6-b, —a).

Absolutely and completely monotonic functions have remarkable applications. In view
of their importance in probability theory, numerical analysis, potential theory, and other
fields these functions have been studied by many authors. We reffet,t€hapter 1V],
where the basic properties of absolutely and completely monotonic functions are collected.
Interesting historical facts on these and related classes of functions can be found in [4,13,
Section 82]. A detailed list of references on completely monotonic functions is given in
[2,3].

In this paper, we are concerned with functions, which are defing@,ar). Therefore,
throughout, ‘fis absolutely (resp. completely) monotonic’ means that (1.1) (resp. (1.2))
holds witha = 0 andb = oc. An important characterization of completely monotonic
functions was given by Bernstein, who proved thiatcompletely monotonic if and only if

Fl) = f o,

whereu is a non-negative measure ) co) such that the integral converges foral 0.
See[14, p. 161].

The logarithmic derivative of Euler's gamma functiap, = I'/T’, is known in the
literature as digamma or psi function. The derivatiyésy”, ... are called polygamma
functions. The following integral and series representations are valid o0 andn € N:

w(n)(x) — (_1)n+1 foo et tne,l dt = (_1)n+1n! Z 1 (1.3)
k=0

0 1- — (x + kL

Seq[1, p. 260]. We note that (1.3) implies that for ale N the functionjys™ | is completely
monotonic.
In a recently published paper, Clark and Ismail [5] introduce the functions

Gm(x) =x"Y(x) and @, x) =—x"y"™ (x).

They prove thaGf,’f’H) is completely monotonic for = 1,2, ... and that(I),(,’Z” is com-
pletely monotonicfom = 1,2, ..., 16. Clark and Ismail conjecture th@j,’?") is completely
monotonic for all natural numbers. It is the aim of this paper to disprove this conjecture.
Indeed, in Sectio we establish:

Theorem 1.1. There exists an integei such that for alln >mg the functionl)f,;") is not
completely monotonic.

It might be surprising that in the proof of Theordmi a key role is played by the function
H(x) = Y ;2,(1/k)sin(x/k), which was studied by Hardy and Littlewood in 1936. In the
next section we investigate the behaviouibx) for largex.
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2. A function of Hardy and Littlewood

Some problems on Lambert summability led Hardy and Littlewi@do the function

Hx =Y % sin(%) , xeC. 2.1)

It is an odd entire function, and inserting the power series for the sine function we get the
representation

2k
H(x) Z( l)k 1(2§€( ;-)' 21’(—17 (22)

showing thaH is of exponential type:

72 72
|H(x)|<€S|nh(|x|)< exp(jx]), xeC. (2.3)

Using that] sin(x)| < |x| for x € R we obtain the elementary bound

2
|H(x>|<%|x|, xeR,

where the constant factar?/6 is best possible. Since the power series in (2.2) is related
to the sine series one might expect thiais bounded on the real axis. This is not so as it
was shown by Hardy and Littlewood using a humber theoretic approach. They constructed
a sequence; — oo such that (yx) > C(loglogyx)/2. Flett [6] continued the study of

H and established that for evesy> 0:

H(x) = 0((logx)®*(loglogx)*t1/?), x — oo.

A simple calculation give$—1) H'(km) > 0 fork = 0, 1, .. .. This implies thaH attains
a local maximum in2nmn, (2n + 1)n] and a local minimum if(2n + L)z, (2n + 2)7],
n=0,1,...

Our proof of Theoreni.1 depends on the fact thidtcan attain arbitrary large negative
values. Such a result is not mentioned in [6,8], but is important for the main result of this
paper, since we prove that the conjecture of Clark and Ismail is equivalent to the inequality
H(x)> — n/2 for x > 0. A computer plot reveals thd (x) > —0.5 for 0 < x < 1000;
see [7]. We also remark thdf (xg) = 0, wherexo = 48.2... and thatH (x) > 0 for
0 < x < xp.

We show below that the proof in [8] can be modified to show that there exists a sequence
x; — oo such thatH (xy) < —C(loglogxy)/2. The result of Hardy and Littlewood and
the corresponding result for large negative values can be expressed by the statement

H(x) = Qi ((loglogx)Y?), x — o.

That such an extension is possible was observed by Péterfh@np. 73]. In this and
subsequent work he proved, -estimates for classes of functions including the Hardy—
Littlewood function; see [11,12].
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Forx > 0 we define
[x]

H,(x) = Z }sinG) and H*(x) = i }sin@),
k=1 k k k=[x]+1 k k

where[x] denotes the greatestinteger notgreaterxhhatx > 2. Sincey — (1/y)sin(x/y)
is decreasing of{x], c0), we get

1. ©1
f —sin <£> dng*(x)gf —sm()—c> dy. (2.4)
[x]+1 Y y [x]1 Y y

The sine integral is defined by @) = fé‘ sin(z)/t dt. Substitutingg = x/y we conclude
from (2.4) that

0.65... = Si(2/3)<Si(x/([x] + 1)) < H*(x) < Si(x/[x]) <Si(3/2) = 1.32.....

In particular, we obtain lim_, o H*(x) = Si(1) = 0.94.. ..
Let M be the set of natural numbegssuch that all prime factors af are of the form
4dn + 1, that is

M ={1,5,13,17,25,29,37,41,45, ..},
and letN (n) = #{g € M|q <n}, wheren >0. In[9] Landau proved that
B(x) ~ bx/\{/logx, x — o0,

whereB(x) denotes the number of integers x, which can be written as the sum of two
squares, anéd > 0 is an explicit constant. From this we can deduce that there exists a
positive constan€* such that

N(n)>=C*n/\/logn, n>1, (2.5)

as stated if8].
Fork € N we define

4k+1
K=k =] ¢ and xj=(4j+3)1<g, where j=1,....K. (2.6)
g=1

qeM

Then we have:

Theorem 2.1. For everyk € N there exists an integef, € {1, ..., K(k)} such that

Hy(x;,)<a — b\/logk,
wherea, b > 0 are real constants independent of k.

Proof. Letk e Nandj e {1, ..., K}. We write H,(x;) = Aj + B; with
[x;]

A,-:i%sin(%) and Bj= »_ %sin(ﬁ)

n
n=1 n=K+1
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and claim that
|Bj|<C, (2.7)

where(1 is independent of. Applying the mean value theorem we get

[x;]

[xjl+1 q X; ntl /s 1 /x;
e[y () o= 2 [ G- Sen())
[x;]

Lgn(M
=3 [Ten(-Gen(¥)

n=K+1

whereé = &,(y) € (n,n + 1). Using 0= Si(0) < Si(x) <Si(n) = 1.85... for x >0, we
obtain

[x;]

lojl+1 1 X : 1 x;
[ ) ol 3 (03
! K+1 Y y Z n?  n3

n=K+1
2 o0
X X b 1
< |Si| —L= ) -si ! )+—+x~ —
' <K+1> ([xj]+1 6 ;1;13
4K + 3)n
S'(TE)+—+2 2<S|(ﬂ)+€+%<cl~
Next, we setd; = a; + a} with
K K
1_ Xj N 1 . /x;
_;; (—) and aj_;;gn(;).
n|K nfiK

If n|K, then(4j + 3)K /n is of the form 4 + 3 (p € 2), so that sirix;/n) = —1. This
implies

K o1
al = =daK = X; ;
n|K
Further,
Ak+1 Ak+1 4k
1 N(n )—N(n—l) N(n)
—a1>= > . 2.8
vty Z e @9

qeM
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Applying (2.5) we conclude from (2.8):
4k
1

Z4c* - -
2+ 112:; (n+1)/logn
1

Ak+2 dx 1
2+C>k ./3 xaxlogx - §+2C*(\/|Og(4k+2)_\/|093)‘

This shows that there exists a const@at> 0 independent dk such that

a1 < — Cay/logk. (2.9)
Settingx = Kr/(2n) we have

2sin2x) sin((4j + 3)x) = cos((4f + 1)x) — cos((4/ + 5)x).

Summing yields

2sin(2x) Z sm( ) = cos(5x)— cos((4K + 5)x).
o

Let1 < n<K andn{K. Then

K X 1 1
3 sin(—f) <— N . (2.10)
=i n | sin(2x)| | Sin(K7t/n)|
We can writeK = nd + r with 1<r < n. This leads to
|sin(Kn/n)| = sin(rn/n) > sin(z/n) >2/n. (2.11)

Applying (2.10) and (2.11) we get

K
Za _,,Z Zsm( SEDIERELS (2.12)
ntK ntkK

From (2.9) and (2.12) we obtain
—ZA =a1+ — Za <a1+ = él Cy/logk.
2

This reveals that for at least onig € {1, ..., K} we haveA;, <(1/2) — C2./logk. This
result combined with (2.7) gives that there exists a consignt 0 independent df such
thatH.(x;,) = Aj, + Bj, <Cz — C2./logk. The proof of Theorem 2.1 is complete[J

Let (jx) be the sequence given in Theorem 2.1 and Jet= (4jx + 3)K (k)m/2. From
(2.6) we get

xj, <K + 3)Kg and K < (4 + D)%+,
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which implies that there exists a numidgre N such that for alk > ko:
loglogx;, <2logk.
SinceH™ is bounded o0, co), we get fork > ko:
H(xj,) = Hi(xj,) + H"(xj,)< — C,/loglogx , , (2.13)

whereC > 0 is a constant independentlo&nd lim_, o, x;, = oo.

3. Proof of Theorem 1.1

Let @,,(x) = —x"™y" (x). In order to establish Theorethl we make use of the
following integral formula, which is given in [5]:

o0
DI (x) = / , e f (1) dt,

where

am  x™

In0 =g 1=

We show that there exists an integeg such that for alln >mg the functionf,, attains
negative values o(0, oco), althoughf,,(x) >0 for x >2log2,m = 1,2, .... See the ap-

(3.1)

pendix.
The generating function for the Bernoulli numbers yields|fdr< 2x:
X X X > By
_ _ X Bk k
e PPN

k=2

Using the Pochhammer symb@l); = a(a + 1)--- (a + k — 1) we obtain
() =5+ k; o Omx

and sinceBy; 11 = 0 fork>1, we get

m! ad Boy k-1
fu() =5+ kZl o @™ (3.2)
Thus, for|x| < 2mm:
1 x 1 = Bx 2w o1
o (Z) =27 2. 2! mZ—Tt (33)

k=1
Letk >1 be a fixed integer. Since
(2k)m 1

A 2Tt~ (2 = 1)1
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we conclude that formally the expression on the right-hand side of (3.3) converges to
o0 2%k—1

L By x B
2 +I§. (2k)! (2k — 1)! =s(x), say

To give a rigorous proof of
1
im = £, (ﬁ) = s(0), (3.4)
m—00 ! m

we fix A > 0 and prove the uniform convergence for complex numkevih |x| < A. Let
N € NsuchthatA < 2Nrwand letx| < A. Thenwe getfom > N that|x/m|<A/N < 2x.
We have fork € N:

2k—1 . 2k—1 .
(m + L)pk—1 J J (N +2k—1)!
mZ1 = 1_[1 ) s Hl THN) T TawET
Jj= j=

This leads to

|Bx| (m 4+ D1 [x|Z1 By (N 42k —1)! £ A\ZL
< — =c;, Ssay
(k) m%-1  (2k—1)! " (2)! N2k —1)! \ N

Using
. B 1 . 2k+ N —1)!
lim 2"ﬂz— and lim 2"gzl,
k— 00 (Zk)' 2n k— 00 (2k — !
we obtain
lim %/c; = A <1
k—00 2NT ’

which implies thafy "~ ; ¢ is convergent. Let > 0. We chooség € N such that

|By| A%t
Z ¢ <¢& and Z @ @& D <&. (3.5)
k=ko
Then we get

|x|2k—l

ko—1 o)
[Box| | (m + D)1
-1 . 3.6
; +1§k0 @0 m T - 80

The second sum in (3.6) can be majorized by the two series given in (3.5) with sum less
than 2. The first sum converges uniformly to zero, so it is less theom sufficiently large
m.
Let H be the function defined in (2.1). Inserting Euler’s formi@k) = (—1)1
B 221712k /(2k)! (k € N) in expression (2.2), we obtain the identity

L 2H (L) = s, (3.7)

‘%f (5)-sw| <
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which shows that{ (x) is bounded below by-7/2 for positivex if and only if s (x) >0 for
x > 0. It follows from (2.13) and (3.7) thatattains negative values @f, co). We further
claim that the conjecture of Clark and Ismail is equivalent(to) >0 for x > 0. In fact,
if (D,(n’") is completely monotonic for ath, thenf,, is non-negative o0, co) for all m, so
that (3.4) yields (x) >0 forx > 0. Conversely, if(x) >0 for x > 0, then the formulas

fn(x) = /00 e 't"s(xt)dt, |x|<2n (3.8)
0

and
fm(x)=0, x>2log2 (3.9

which are proved in the appendix, imply th&f is non-negative oK, cc), so thatd™ is
completely monotonic.

4. Remarks and open problems

(1) Computer experiments suggest tliatis non-negative on the interved, 2 log 2) for
m = 17, ...,40. We conjecture that the smallest positive integiesuch thatf,,- attains
negative values is ‘rather large’. In particular, it remains an open problem to determine all
positive integersn such thaﬂ),(n’”) is completely monotonic.

(2) We define forr € R andm € N:

Agm(x) = xX* Y™ (x)], x> 0. (4.1)

Since the product of completely monotonic functions is also completely monotonic, we
obtain: ifa<<0 andm € N, thenA, ,, is completely monotonic. Next, let > 0 and let
A, be completely monotonic. Then we get for- O:

AL L () = e [ ()] = 2 ) <0,
We have
lim fly® )=k -1)!, keN (4.2)
X—> 00

(see[l, p. 260]), so that we obtaiGn — 1)!(« — m) <0 ora<m. However, Theorem 1.1
and the identity
(=L@ = (L AR 20, m>1,

reveal that for largen the inequalitya<m is not a sufficient condition for the complete
monotonicity ofA,_,,. It is an open problem to determine &4, m) € R* x N such that
Ay m is completely monotonic.

(3) For all real numbers and positive integensiwe have: the function, ,, (as defined
in (4.1)) isnotabsolutely monotonic.
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To prove this we assume (for a contradiction) that there exist a real numaed a
positive integem such that\, ,, is absolutely monotonic. We sat= A, ,,. Using

lim, Sy O ) =k, keN
xX—

(se€[1, p. 260]), we obtain

lim, X2 (x) =m0t — m — 1) >0. (4.3)

X—

Let p = [a] +1—m. From (4.3) we conclude that > 1. Applying the Leibniz rule we get

p
A(p)(x) — Z (?) (_1)p—j(a —j+ 1)J~x°‘_j|t//(p+m7j)(x)|.

j=0
LetO<j<p.ThenOKa—j < p+m — j, sothat (4.2) gives

lim x|y Ptm=D(x)| = 0.

X—> 00

This implies that lim_ o A? (x) = 0. By assumptionA”*V(x) >0 for x > 0. Hence,
AP is increasing on(0, 0o), which leads toA” (x) <0 for x > 0. Thus,A”’ = 0 on
(0, 00), so that we obtain®|yy™ (x)| = Q(x), whereQis a polynomial of degree< p —1.
Differentiation gives

WPl Q'
" (o)l ()’
Applying (4.2) we conclude from (4.4) that= m + r. Hence,

(4.4)

.
Yl =Y aixl, say
j=0
But this contradicts the (uniquely determined) asymptotic expansion

@k +m—1)!
(2K)! ’

| o
x"’|¢<m>(x)|~(m—1)!+%+z By X — 00.
k=1
See[1, p. 260].

(4) LetG,, (x) = x™y(x). In Section 1 we mentioned thét,(,',”+1) is completely mono-
tonic for allm € N. This result can be generalized. ketn € N. The functionGﬁ,’,’) is
completely monotonic if and only # > m andm + n is odd.

Using the Leibniz rule and the recurrence form@{q (x +1) = y® (x)+ (= 1)kklx—*-1
we obtain for XK n<m andx > O:

_ 1
MG (x) = (m —n+ Dy (x + 1) — (m —n)y =
X

n—1

+> (’;) (m — j+1);x" Iy D (x +1).

j=0
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This leads to

l@oxn_"’+lG;’l’)(x) =—m-n),, 1<n<m (4.5)
and

lim. G (x) = —ym!, (4.6)

wherey = 0.57721. .. denotes Euler’s constant. Andyif> m, then we get fotv >0 and
x > 0:

o0

EDVGR D™ = (=1 YN )ty —

S 4.7)
N+n+1
P (x+k)

See[5]. From (4.5) and (4.6) we conclude that iKl: <m, thenG is not completely
monotonic. And (4.7) implies thatif > m, thenG(”) is completely monotonic if and only
if m 4+ n is odd.

Appendix

The Laguerre polynomidl,, of degreamis defined by

ex am B m m (_1)k ‘

We get
y dxm
This yields the following connection td,, as given in (3.1):

e Ly (kx) = (ex™).

o
fm(x) = m! Z e ™ L, (kx), x> 0.
k=0
By an inequality due to Szegd (sget, p. 168]) we havéL,, (x)| <e*/2 for x >0, so that
we obtain forx > 0:
Z e~ L (ki)

7x/2

< Z (efx/Z)k _X/Z

Theright-hand sideis{ 1ifand onlyifx >2log 2, so thaL,, (0) = 1 impliesthatf,,(x) >0
for x >21log 2, as claimed in3.9).

For |x| < 2n we have the power series expansion (3.2)/p(x), and inserting Euler’s
formula for{(2k) we obtain

r(m+1) 1 & 11 @0 x \ 21
n) = g L D T T+ 20 (=)
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Using Euler’s integral for the gamma function, interchanging sum and integral, and applying
(3.7) we get

o 1 1 t o0
fm(x) = / e 't ( +—-H <x>> dt = / e 't"s(xt)dt,
0 2 7 2n 0

which proves (3.8). We remark that the interchanging is allowed by dominated convergence
becauséx| < 2r and inequality (2.3) holds.
An examination of the functiorf,, shows thatf,, (x) starts as an increasing function at
x = 0with £, (0) = m!/2, f,, (0) = (m +1)!/12, and it oscillates crossing the lipe= m!
a number of times. It approaches from above or below depending on the paritynofor
x — oo. Computer experiments suggest that it crosses 1 times. The oscillation close
to x = 0 becomes very wild as1becomes very large. In fact, the oscillationmfx) and
hence ofs (x) for largex is reflected in the oscillation of, (x) for x close to zero because
of (3.4).
Using the power series expansionsafie obtain easily

> . 1
—xt. _ _
/0 e 's(tdt = xi(l— 1) 1, x>0
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